Surface patterning of silica nanostructures using bio-inspired templates and directed synthesis.

نویسندگان

  • Elizabeth A Coffman
  • Anatoli V Melechko
  • David P Allison
  • Michael L Simpson
  • Mitchel J Doktycz
چکیده

Natural systems excel in directing the synthesis of inorganic materials for various functional purposes. One of the best-studied systems is silica synthesis, as occurs in diatoms and marine sponges. Various biological and synthetic polymers have been shown to template and catalyze silica formation from silicic acid precursors. Here, we describe the use of poly-L-lysine to promote the synthesis of silica in neutral, aqueous solution and when immobilized onto a silicon support structure under similar conditions. Either reagent jetting or conventional photolithography techniques can be used to pattern the templating polymer. Spots created by reagent jetting led to the creation of silica structures in the shape of a ring that may be a result of the spotting process. Photolithographically defined poly-L-lysine spots led to thin laminate structures after exposure to a dilute aqueous silicic acid solution. The laminate structures were nanostructured and highly interconnected. Photolithographic patterning of (3-aminopropyl)trimethoxysilane, a reagent that mimics the lysine functional group, led to similar silica coatings even though low-molecular-weight materials do not rapidly promote silica synthesis in solution. This result highlights the importance of functional-group arrangement for templating and promoting the synthesis of inorganic materials. The described surface-patterning techniques offer a route to integrate conventional silicon-patterning technologies with biologically based material synthesis. Such combined fabrication techniques enable controlled assembly over multiple length scales and an approach to understanding interfacial silica synthesis, as occurs in natural systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications

In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...

متن کامل

Preparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications

In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...

متن کامل

Synthesis and Characterization of Novel Modified and Functionalized Silica Nano-particles for Protein Delivery Applications

In this study, the synthesis, characterization and controlled release behavior of new Hollow Silica Nano particles (HSNPs) and Magnetic Silica Nano Particles (MSNPs) were studied. Magnetic Silica Nano particles (MSNPs), as drug delivery vehicles, were synthesized through the coating of Fe3O4 nano-crystals with silica layers. The HSNPs were obtained by removal of Fe3O4 templates with hydrochlori...

متن کامل

Metallization of biologically inspired silica nanotubes

a r t i c l e i n f o The desire and need for various types of nanostructures have been met with challenges of feasibility, reproducibility, and long fabrication time. To work towards improved bottom-up methods of nano-fabrication, we use bacterial flagella as bio-templates for fabricating silica-mineralized nanotubes, which are ideal for the formation of metal nanoparticles or metal oxide nano...

متن کامل

Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature

Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial selfassembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architectu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 20 20  شماره 

صفحات  -

تاریخ انتشار 2004